14 research outputs found

    Turvalisel ühisarvutusel põhinev privaatsust säilitav statistiline analüüs

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsioone.Kaasaegses ühiskonnas luuakse inimese kohta digitaalne kirje kohe pärast tema sündi. Sellest hetkest alates jälgitakse tema käitumist ning kogutakse andmeid erinevate eluvaldkondade kohta. Kui kasutate poes kliendikaarti, käite arsti juures, täidate maksudeklaratsiooni või liigute lihtsalt ringi mobiiltelefoni taskus kandes, koguvad ning salvestavad firmad ja riigiasutused teie tundlikke andmeid. Vahel anname selliseks jälitustegevuseks vabatahtlikult loa, et saada mingit kasu. Näiteks võime saada soodustust, kui kasutame kliendikaarti. Teinekord on meil vaja teha keeruline otsus, kas loobuda võimalusest teha mobiiltelefonikõnesid või lubada enda jälgimine mobiilimastide kaudu edastatava info abil. Riigiasutused haldavad infot meie tervise, hariduse ja sissetulekute kohta, et meid paremini ravida, harida ja meilt makse koguda. Me loodame, et meie andmeid kasutatakse mõistlikult, aga samas eeldame, et meie privaatsus on tagatud. Käesolev töö uurib, kuidas teostada statistilist analüüsi nii, et tagada üksikisiku privaatsus. Selle eesmärgi saavutamiseks kasutame turvalist ühisarvutust. See krüptograafiline meetod lubab analüüsida andmeid nii, et üksikuid väärtuseid ei ole kunagi võimalik näha. Hoolimata sellest, et turvalise ühisarvutuse kasutamine on aeganõudev protsess, näitame, et see on piisavalt kiire ja seda on võimalik kasutada isegi väga suurte andmemahtude puhul. Me oleme teinud võimalikuks populaarseimate statistilise analüüsi meetodite kasutamise turvalise ühisarvutuse kontekstis. Me tutvustame privaatsust säilitavat statistilise analüüsi tööriista Rmind, mis sisaldab kõiki töö käigus loodud funktsioone. Rmind sarnaneb tööriistadele, millega statistikud on harjunud. See lubab neil viia läbi uuringuid ilma, et nad peaksid üksikasjalikult tundma allolevaid krüptograafilisi protokolle. Kasutame dissertatsioonis kirjeldatud meetodeid, et valmistada ette statistiline uuring, mis ühendab kaht Eesti riiklikku andmekogu. Uuringu eesmärk on teada saada, kas Eesti tudengid, kes töötavad ülikooliõpingute ajal, lõpetavad nominaalajaga väiksema tõenäosusega kui nende õpingutele keskenduvad kaaslased.In a modern society, from the moment a person is born, a digital record is created. From there on, the person’s behaviour is constantly tracked and data are collected about the different aspects of his or her life. Whether one is swiping a customer loyalty card in a store, going to the doctor, doing taxes or simply moving around with a mobile phone in one’s pocket, sensitive data are being gathered and stored by governments and companies. Sometimes, we give our permission for this kind of surveillance for some benefit. For instance, we could get a discount using a customer loyalty card. Other times we have a difficult choice – either we cannot make phone calls or our movements are tracked based on cellular data. The government tracks information about our health, education and income to cure us, educate us and collect taxes. We hope that the data are used in a meaningful way, however, we also have an expectation of privacy. This work focuses on how to perform statistical analyses in a way that preserves the privacy of the individual. To achieve this goal, we use secure multi-­‐party computation. This cryptographic technique allows data to be analysed without seeing the individual values. Even though using secure multi-­‐party computation is a time-­‐consuming process, we show that it is feasible even for large-­‐scale databases. We have developed ways for using the most popular statistical analysis methods with secure multi-­‐party computation. We introduce a privacy-­‐preserving statistical analysis tool called Rmind that contains all of our resulting implementations. Rmind is similar to tools that statistical analysts are used to. This allows them to carry out studies on the data without having to know the details of the underlying cryptographic protocols. The methods described in the thesis are used in practice to prepare for running a statistical study on large-­‐scale real-­‐life data to find out whether Estonian students who are working during university studies are less likely to graduate in nominal time

    Secure Floating-Point Arithmetic and Private Satellite Collision Analysis

    Get PDF
    In this paper we show that it is possible and, indeed, feasible to use secure multiparty computation for calculating the probability of a collision between two satellites. For this purpose, we first describe basic floating-point arithmetic operators (addition and multiplication) for multiparty computations. The operators are implemented on the SHAREMIND secure multiparty computation engine. We discuss the implementation details, provide methods for evaluating example elementary functions (inverse, square root, exponentiation of e, error function). Using these primitives, we implement a satellite conjunction analysis algorithm and give benchmark results for the primitives as well as the conjunction analysis itself

    Rmind: a tool for cryptographically secure statistical analysis

    Get PDF
    Secure multi-party computation platforms are becoming more and more practical. This has paved the way for privacy-preserving statistical analysis using secure multi-party computation. Simple statistical analysis functions have been emerging here and there in literature, but no comprehensive system has been compiled. We describe and implement the most used statistical analysis functions in the privacy-preserving setting including simple statistics, t-test, χ2\chi^{2} test, Wilcoxon tests and linear regression. We give descriptions of the privacy-preserving algorithms and benchmark results that show the feasibility of our solution

    Secure multi-party data analysis: end user validation and practical experiments

    Get PDF
    Research papers on new secure multi-party computation protocols rarely confirm the need for the developed protocol with its end users. One challenge in the way of such validation is that it is hard to explain the benefits of secure multi-party computation to non-experts. We present a method that we used to explain the application models of secure multi-party computation to a diverse group of end users in several professional areas. In these interviews, we learned that the potential users were curious about the possibility of using secure multi-party computation to share and statistically analyse private data. However, they also had concerns on how the new technology will change the data analysis processes. Inspired by this, we implemented a secure multi-party computation prototype that calculates statistical functions in the same way as popular data analysis packages like R, SAS, SPSS and Stata. Finally, we validated the practical feasibility of this application by conducting an experimental study that combined tax records with education records

    Students and Taxes: a Privacy-Preserving Social Study Using Secure Computation

    Get PDF
    We describe the use of secure multi-party computation for performing a large-scale privacy-preserving statistical study on real government data. In 2015, statisticians from the Estonian Center of Applied Research (CentAR) conducted a big data study to look for correlations between working during university studies and failing to graduate in time. The study was conducted by linking the database of individual tax payments from the Estonian Tax and Customs Board and the database of higher education events from the Ministry of Education and Research. Data collection, preparation and analysis were conducted using the Sharemind secure multi-party computation system that provided end-to-end cryptographic protection to the analysis. Using ten million tax records and half a million education records in the analysis, this is the largest cryptographically private statistical study ever conducted on real data

    Rmind: A Tool for Cryptographically Secure Statistical Analysis

    No full text

    From Keys to Databases—Real-World Applications of Secure Multi-Party Computation

    Get PDF
    We discuss the widely increasing range of applications of a cryptographic technique called Multi-Party Computation. For many decades this was perceived to be of purely theoretical interest, but now it has started to find application in a number of use cases. We highly in this paper a number of these, ranging from securing small high value items such as cryptographic keys, through to securing an entire database
    corecore